A New Swarm Intelligence Approach for Clustering Based on Krill Herd with Elitism Strategy

نویسندگان

  • Zhi-Yong Li
  • Jiao-Hong Yi
  • Gaige Wang
چکیده

As one of the most popular and well-recognized clustering methods, fuzzy C-means (FCM) clustering algorithm is the basis of other fuzzy clustering analysis methods in theory and application respects. However, FCM algorithm is essentially a local search optimization algorithm. Therefore, sometimes, it may fail to find the global optimum. For the purpose of getting over the disadvantages of FCM algorithm, a new version of the krill herd (KH) algorithm with elitism strategy, called KHE, is proposed to solve the clustering problem. Elitism tragedy has a strong ability of preventing the krill population from degrading. In addition, the well-selected parameters are used in the KHE method instead of originating from nature. Through an array of simulation experiments, the results show that the KHE is indeed a good choice for solving general benchmark problems and fuzzy clustering analyses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid Data Clustering Algorithm Using Modified Krill Herd Algorithm and K-MEANS

Data clustering is the process of partitioning a set of data objects into meaning clusters or groups. Due to the vast usage of clustering algorithms in many fields, a lot of research is still going on to find the best and efficient clustering algorithm. K-means is simple and easy to implement, but it suffers from initialization of cluster center and hence trapped in local optimum. In this paper...

متن کامل

Krill Herd Clustering Algorithm using DBSCAN Technique

The hybrid approach is proposed to show that the clusters also show the swarm behavior. Krill herd algorithm is used to show the simulation of the herding behavior of the krill individuals. Density based approach is used for discovering the clusters and to show the region with sufficiently high density into clusters of krill individuals that of the arbitrary shape in environment. The minimum di...

متن کامل

Clustering Using an Improved Krill Herd Algorithm

In recent years, metaheuristic algorithms have been widely used in solving clustering problems because of their good performance and application effects. krill herd algorithm (KHA) is a new effective algorithm to solve optimization problems based on the imitation of krill individual behavior, and it is proven to perform better than other swarm intelligence algorithms. However, there are some we...

متن کامل

Krill herd (KH) algorithm for portfolio optimization

This paper presents novel krill herd (KH) nature-inspired metaheuristics for solving portfolio optimization task. Krill herd algorithm mimics the herding behavior of krill individuals. The objective function for the krill movement is defined by the minimum distances of each individual krill from food and from higher density of the herd. Constrained portfolio optimization problem extends the cla...

متن کامل

Stud krill herd algorithm

Recently, Gandomi and Alavi proposed a meta-heuristic optimization algorithm, called Krill Herd (KH), for global optimization [Gandomi AH, Alavi AH. Krill Herd: A New Bio-Inspired Optimization Algorithm. Communications in Nonlinear Science and Numerical Simulation, 17(12), 4831–4845, 2012.]. This paper represents an optimization method to global optimization using a novel variant of KH. This me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Algorithms

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2015